## Problem Sheet 9

## Problem 1

Every $p$-adic number $0 \neq \alpha \in \mathbb{Q}_{p}$ has a unique series expansion

$$
\alpha=\sum_{i=n}^{\infty} a_{i} p^{i}, \quad n \in \mathbb{Z}, a_{i} \in\{0, \ldots, p-1\}, a_{n} \neq 0
$$

(a) Prove that $\alpha \in \mathbb{Q}$ if and only if the sequence $\left(a_{i}\right)_{i \geq n}$ is eventually periodic.
(b) Determine the 5 -adic expansion of $2 / 35$.

## Problem 2

The following is a variant of Hensel's Lemma.
(a) Let $A \rightarrow B$ be a surjection of rings with nilpotent kernel. Let $f \in A[T]$ with derivative $f^{\prime}$ and let $\alpha \in B$ be such that

$$
f(\alpha)=0, \quad f^{\prime}(\alpha) \in B^{\times}
$$

Prove that there is a unique lift $\tilde{\alpha} \in A$ of $\alpha$ with $f(\tilde{\alpha})=0$.
(b) Show that $\sqrt{2}$ exists in $\mathbb{Q}_{7}$. Show similarly that $T^{3}-2=0$ has a unique solution in $\mathbb{Q}_{5}$.

